Mehrfachbindungen zwischen Hauptgruppenelementen und Übergangsmetallen

XLVII *. Nachweis der Elektrophilie eines trigonal-planar koordinierten Telluratoms

Wolfgang A. Herrmann*, Christian Hecht und Eberhardt Herdtweck

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (Deutschland)

(Eingegangen den 17. Februar 1987)

Abstract

The central tellurium atom coordinated to three manganese atoms in the compound $(\mu_3\text{-Te})[(\eta^5\text{-}C_5\text{H}_5)\text{Mn}(\text{CO})_2]_3$ (1) exhibits electrophilic reactivity, thus undergoing methylation with methyllithium to yield the anion $[(\mu_3\text{-TeCH}_3)\{(\eta^5\text{-}C_5\text{H}_5)\text{Mn}(\text{CO})_2\}_3]^-$, whose structure was determined crystallographically. While the precursor compound 1 contains a planar Mn₃Te core structure (d(Mn-Te) 248.7 pm, av.), carbanion addition effects pyramidalization of this fragment (d(Mn-Te)257.7 pm, av.), with the tellurium atom appearing at a distance of 56 pm above the plane defined by the three manganese atoms.

Zusammenfassung

Das im Komplex $(\mu_3\text{-Te})[(\eta^5\text{-}C_5\text{H}_5)\text{Mn}(\text{CO})_2]_3$ (1) an drei Manganatome koordinierte zentrale Telluratom weist elektrophile Reaktivität auf. So lässt es sich mit Methyllithium zum kristallographisch charakterisierten Anion $[(\mu_3\text{-TeCH}_3)\{(\eta^5\text{-}C_5\text{H}_5)\text{Mn}(\text{CO})_2\}_3]^-$ methylieren. Während die Vorstufe 1 eine planare Mn₃Te-Gerüststruktur aufweist (d(Mn-Te) 248.7 pm, Mittelwert), verursacht die Carbanion-Anlagerung eine Pyramidalisierung dieses Fragments (d(Mn-Te) 257.7 pm, Mittelwert); das Telluratom liegt im Abstand von 56 pm oberhalb der durch die drei Manganatome definierten Ebene.

^{*} XLVI. Mitteilung vgl. Ref. 1.

Einleitung

Tellur kann als substituentenfreier Brückenligand auf verschiedenartige Weise an Übergangsmetallzentren gebunden sein [2]. Zum einen besteht die Möglichkeit zur Metallfixierung über Einfachbindungen, wie dies auf den mit TeH₂ isolobalen Komplex (μ -Te)[(η^5 -C₅H₅)Cr(CO)₃]₂ zutrifft [2]; andererseits kann unter Beteiligung aller Tellur-Valenzelektronen eine mit TeO₃ isolobale Mehrfachbindungsstruktur realisiert werden, wofür der Komplex (μ_3 -Te)[(η^5 -C₅H₅)Mn(CO)₂]₃ (1) das erste Beispiel darstellte [4,5].

Die Konstitutionstypen A und B lassen grosse Reaktivitätsunterschiede erwarten. Während B am Telluratom aufgrund der drei π -Bindungen eine sehr niedrige Elektronendichte aufweist und damit Lewissäure-Eigenschaften haben sollte, ist für Komplexe vom Typs A die durch die beiden am Telluratom vorhandenen Elektronenpaare bedingte Nukleophilie nachgewiesen [3,6]: So ist die zitierte Cr₂Te-Verbindung glatt zu den Komplexkationen [(μ -TeH){(η^{5} -C₅H₅)Cr(CO)₃}²]⁺ und [(μ -TeCH₃){(η^{5} -C₅H₅)Cr(CO)₃}²]⁺ protonierbar bzw. methylierbar. Umgekehrt sollte sich das Tellur-Brückenatom der Verbindung 1 nukleophil methylieren lassen [6].

Präparative Ergebnisse

Wirkt Methyllithium bei -78° C in Diethylether-Lösung auf den Komplex I ein, so erfolgt nach Gl. 1 spontane Methylierung zu dem in Lösung luftempfindlichen, im festen Zustand sogar pyrophoren Komplex-Anion $[(\mu_3\text{-TeCH}_3){(\eta^5\text{-}C_5\text{H}_5)\text{Mn}}(\text{CO})_2]_3]^-$, das nach Umfällen mit Bis(triphenylphosphoranyliden)ammoniumchlorid (PPN⁺Cl⁻) aus N₂-gesättigter wässriger Lösung und anschliessender Umkristallisation (Aceton/Diethylether) im Komplexsalz 2 vorliegt. Dieses ist zumindest kurzzeitig luftbeständig und daher etwas bequemer handhabbar.

 $L_{x}M = (\eta^{5} - C_{5}H_{5})Mn (CO)_{2}$ $PPN^{+} - (C_{6}H_{5})_{3}P = \hat{N} - P(C_{6}H_{5})_{3}$

Das Infrarotspektrum des Komplexsalzes 2 zeigt CO-Absorptionen im Bereich von 1925–1840 cm⁻¹ (THF). Die gegenüber der Ausgangsverbindung 1 um etwa 50 cm⁻¹ zu niedrigeren Wellenzahlen verschobenen CO-Valenzschwingungsbanden stehen mit einer Erhöhung der Elektronendichte als Folge der Carbanion-Addition an das Te-Atom im Mn₃Te-Gerüst im Einklang. Das ¹H-NMR-Spektrum zeigt die Protonen des Kations als Multiplett im Bereich von δ 7.53–7.77 ppm, die Protonen der Cyclopentadienyl-Liganden als Singulett bei δ 4.44 ppm sowie die Methylprotonen bei δ 1.92 ppm (Aceton- d_6). Im {¹H}¹³C-NMR-Spektrum (Aceton- d_6) erscheint die TeCH₃-Gruppe als Singulett bei δ –14.5 ppm. Die Daten der ¹H- und ¹³C-Kernresonanzspektren belegen die chemische Äquivalenz aller C₅H₅-Gruppen und weisen auf eine symmetrische Anordnung der drei manganhaltigen d^6 -ML₅-Fragmente um das zentrale Telluratom hin. Die hieraus resultierende Frage, ob 1 bei der Methylanion-Addition seine nahezu planare Mn₃Te-Konfiguration verlässt und inwieweit dadurch die Längen der drei MnTe-Bindungen beeinflusst werden, konnte durch eine Röntgenstrukturanalyse beantwortet werden.

Kristallstrukturanalyse des Komplexsalzes $[{P(C_6H_5)_3}_2N]^+[(\mu_3-TeCH_3){(\eta^5-C_5H_5)Mn(CO)_2}_3]^-(2)$

Die Verbindung kristallisiert aus Aceton/Diethylether bei -30 °C monoklin in der Raumgruppe $P2_1/c$ (I.T.-Nr.: 14). Ausgewählte Bindungsparameter sind in Tab. 1 aufgelistet*. Auf Fig. 1 und 2 erkennt man, dass die Mn₃Te-Struktureinheit des Anions eine stark abgeflachte Pyramide bildet. Die TeCH₃-Gruppe ist an drei äquivalente (η^5 -C₅H₅)Mn(CO)₂-Fragmente koordiniert. Die Mangan-Atome sind um mehr als 429 pm voneinander entfernt, weisen also keine bindenden Wechselwirkungen auf [7]. Die im Bereich 256.8–258.6 pm recht einheitlichen MnTe-Bindungslängen sowie die zu 214.7 pm bestimmte TeC-Bindung und die von ihnen aufgespannten Winkel («MnTeMn 113.4–117.5°; «MnTeC 101.8–103.9°; Tab. 1) verleihen dem nahezu trigonal-pyramidalen, von einer Tetraedergeometrie weit entfernten Mn₃TeCH₃-Ensemble C_3 -Symmetrie.

Die MnTe-Bindungen sind mit einer durchschnittlichen Länge von 257.7 pm gegenüber jenen der praktisch planaren Vorstufe 1 um ca. 9 pm aufgeweitet. Hierfür scheint die Verringerung der π -Bindungsanteile, bedingt durch das Verlassen der ebenen Mn₃Te-Anordnung, verantwortlich zu sein. Dennoch muss man für die MnTe-Bindungen in 2 Mehrfachbindungsanteile formulieren, ist doch die mittlere Bindungslänge noch deutlich kürzer als die Summe der kovalenten Einfachbindungsradien (Mn 133, Te 137 pm) [8]. Vergleichbare MnTe-Abstände findet man in dem von Huttner et al. beschriebenen zweikernigen Komplexsalz [N(CH₃)₄]⁺[(μ -TePh){(η ⁵-C₅H₅)Mn(CO)₂}]₂]⁻[9].

Der Tellur-Kohlenstoff-Abstand liegt mit 214.7(2) pm im zu erwartenden Bereich von Einfachbindungen. Vergleichbare Bindungslängen finden sich u.a. im Kation $[Te(CH_3)_3]^+$ (d(Te-C): 207 pm) und im Anion $[Te(CH_3)I_4]^-$ (d(Te-C): 215 pm) [10].

^{*} Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52332, der Autoren und des Zeitschriftenzitats angefordert werden.

312

Tabelle 1						
Ausgewählte	Bindungsparameter	des	Anions	im	Komplexsalz	2

Bindungslängen (pm)						
Te-C		214.7(2)	Mn (1	$1) - C(11 \cdots 15)$		211.3-216.2	
Te-Mn(1)		257.0(>1)	Mn(2	$2) - C(21 \cdots 25)$		209.4-216.3	
Te-Mn(2)		258.6(>1)	Mn(3	3) - $C(31 \cdots 35)$		211.2-216.8	
Te-Mn(3)		256.8(>1)	C(1)-	-O(1)		114.4(3)	
Mn(1)C(1)		177.4(3)	C(2)-	-O(2)		115.7(2)	
Mn(1)-C(2)		176.9(2)	C(3)	-O(3)		116.4(3)	
Mn(2) - C(3)		175.4(3)	C(4)-	-O(4)		116.0(2)	
Mn(2)-C(4)		175.3(2)	C(5)-	-O(5)		118.9(3)	
Mn(3) - C(5)		171.6(3)	C(6)-	-O(6)		116.0(3)	
Mn(3) - C(6)		176.8(3)					
Bindungswinkel (grad)						
Mn(1)-TeMn(2	2)	117.53(1)	TeI	Mn(2)–C(4)		91.25(6)	
Mn(1)-Te-Mn(3	3)	113.40(1)	C(3)	-Mn(2)-C(4)		91.84(12)	
Mn(2)-Te-Mn(3	3)	115.39(1)	Te-1	Mn(3)C(5)		95.33(7)	
Mn(1)-Te-C		101.85(7)	Te-!	Mn(3)–C(6)		91.30(7)	
Mn(2)-Te-C		101.77(5)	C(5)	-Mn(3)-C(6)		89.38(12)	
Mn(3)-Te-C		103.95(7)	Mn(1)-C(1)-O(1)		169.6(3)	
Te-Mn(1)-C(1)		93.02(9)	Mn(1)-C(2)-O(2)		174.7(2)	
Te-Mn(1)-C(2)		94.16(7)	Mn(2) - C(3) - O(3)		175.4(3)	
C(1)-Mn(1)-C(2)	2)	87.47(11)	Mn(2) - C(4) - O(4)		177.2(2)	
Te-Mn(2)-C(3)		93.21(7)	Mn(3)-C(5)-O(5)		174.5(2)	
			Mn(3)C(6)O(6)		177.5(2)	
Posto Elumon							
Deste Lbenen							
Ebene A Mn(1))Mn(2)Mn(3	3)		Ehene E C(1	1-15)		
Ebene A Mn(1) Ebene B Mn(1))Mn(2)Mn(3)Mn(2)Te	3)		Ehene E – C(1 Ehene F – C(2	11–15) 21–25)		
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2))Mn(2)Mn(3))Mn(2)Te)Mn(3)Te	3)		Ebene E – C(1 Ebene F – C(2 Ebene G – C(2	11–15) 21–25) 31–35)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$)Mn(2)Mn(3))Mn(3)Te)Mn(3)Te)Mn(1)Te	3)		Ebene E C(1 Ebene F C(2 Ebene G C(1	11-15) 21-25) 31-35)		
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke)Mn(2)Mn(.)Mn(2)Te)Mn(3)Te)Mn(1)Te	3)		Ebene E – C(1 Ebene F – C(2 Ebene G – C(2	(1-15) 21-25) 31-35)		
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen)Mn(2)Mn(2))Mn(2)Te)Mn(3)Te)Mn(1)Te)el (grad) B	3) C	D	Ebene E C(1 Ebene F C(2 Ebene G C(2 E	11–15) 21–25) 31–35) F	G	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A	Mn(2)Mn(2) Mn(2)Te Mn(3)Te Mn(1)Te el (grad) B 24.7	3) <u>C</u> 23.9	D 23.3	Ebene E C(1 Ebene F C(2 Ebene G C(2 E E	(1-15) 21-25) 31-35) F 28.1	G 110.2	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B	9Mn(2)Mn(3) 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te 9l (grad) B 24.7	C 23.9 42.0	D 23.3 41.2	Ebene E C(1 Ebene F C(2 Ebene G C(2 E 19.9 36.0	(1-15) 21-25) 31-35) F 28.1 35.0	G 110.2 92.1	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C	9Mn(2)Mn(: 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te 9(grad) B 24.7	C 23.9 42.0	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1	F 28.1 35.0 50.6	G 110.2 92.1 133.2	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D	9Mn(2)Mn(3) 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te 9(grad) B 24.7	C 23.9 42.0	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1 39.2	F 28.1 35.0 50.6 15.7	G 110.2 92.1 133.2 102.9	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E	9Mn(2)Mn(: 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te 9(grad) B 24.7	C 23.9 42.0	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1 39.2	F 28.1 35.0 50.6 15.7 47.7	G 110.2 92.1 133.2 102.9 127.7	
Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E E F	9Mn(2)Mn(: 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te 9((grad) B 24.7	C 23.9 42.0	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1 39.2	F 28.1 35.0 50.6 15.7 47.7	G 110.2 92.1 133.2 102.9 127.7 88.1	
Ebene A Mn(1) Ebene B Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E F Torsionswinkel (9Mn(2)Mn(3) 9Mn(2)Te 9Mn(3)Te 9Mn(1)Te el (grad) B 24.7 24.7	C 23.9 42.0	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1 39.2	F 28.1 35.0 50.6 15.7 47.7	G 110.2 92.1 133.2 102.9 127.7 88.1	
Ebene A Mn(1) Ebene B Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E F Torsionswinkel (, C-Te-Mn(1)-C	Mn(2)Mn(2) Mn(2)Te Mn(3)Te Mn(1)Te el (grad) B 24.7 grad) grad)	3) <u>C</u> 23.9 42.0 46.5	D 23.3 41.2 40.3	Ebene E C(1 Ebene F C(2 Ebene G C(1 E 19.9 36.0 6.1 39.2	F 28.1 35.0 50.6 15.7 47.7	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9	
Ebene A Mn(1) Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E F Torsionswinkel (, C-Te-Mn(1)-C C-Te-Mn(1)-C	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te el (grad) B 24.7 grad) grad) (1) (2)	C 23.9 42.0 46.5 41.1	D 23.3 41.2 40.3 Mn Mn	$Ebene \ E \ C(1) \\ Ebene \ F \ C(2) \\ Ebene \ G \ C(2) \\ E \\ \hline \\ E \\ \hline \\ 19.9 \\ 36.0 \\ 6.1 \\ 39.2 \\ \hline \\ n(1) - Te - Mn(3) - n(2) - Te - Mn(3) - n(3) \\ n(2) - Te - Mn(3) - n(3) \\ \hline \\ n(2) - Te - Mn(3) - n(3) \\ \hline \\ n(3) - Mn(3) \\ \hline \\ n(3) \\ n(3) \\ \hline \\ n(3) \\ n(3) \\ \hline \\ n(3) \\$	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5)	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9 - 81.1	
Ebene A Mn(1) Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E F Torsionswinkel (, C-Te-Mn(1)-C C-Te-Mn(2)-C	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te <i>el (grad)</i> <u>B</u> 24.7 <i>grad)</i> <i>grad)</i> <i>grad)</i> <i>grad)</i>	C 23.9 42.0 46.5 -41.1 27.4	D 23.3 41.2 40.3 Mn Mn Mn	$Ebene \ E \ C(1) \\ Ebene \ F \ C(2) \\ Ebene \ G \ C(2) \\ E \\ \hline \\ E \\ \hline \\ 19.9 \\ 36.0 \\ 6.1 \\ 39.2 \\ \hline \\ (2) - Te - Mn(3) - (2) - Te - Mn(3) - (2) - Te - Mn(3) - (3) \\ \hline \\ (2) - Te - Mn(3) - (3) - (3) - (3) - (3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) - (3) - (3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) - (3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) \\ \hline \\ (3) - Te - Mn(3) - (3) \\ \hline \\ (3) - Te - Mn(3) \\ \hline \\ (3) - Te - $	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6)	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9 - 81.1 - 170.6	
Ebene A Mn(1) Ebene A Mn(1) Ebene B Mn(1) Ebene C Mn(2) Ebene D Mn(3) Interplanarwinke Ebenen A B C D E F Torsionswinkel (, C-Te-Mn(1)-C C-Te-Mn(1)-C C-Te-Mn(2)-C C-Te-Mn(2)-C	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te <i>el (grad)</i> <u>B</u> 24.7 (1) (2) (2) (3) (4)	C 23.9 42.0 46.5 -41.1 27.4 -64.5	D 23.3 41.2 40.3 Mn Mn Mn Mn Mn	Ebene E $C(1)$ Ebene F $C(2)$ Ebene G $C(2)$ E 19.9 36.0 6.1 39.2 (2)-Te-Mn(3)-Te-Mn(3)-	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6) -C(1)	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9 - 81.1 - 170.6 - 63.6	
Ebene A = Mn(1) $Ebene A = Mn(1)$ $Ebene B = Mn(1)$ $Ebene C = Mn(2)$ $Ebene D = Mn(3)$ $Interplanarwinke$ $Ebenen$ $A = B$ $C = D$ $E = F$ $Torsionswinkel (, C-Te-Mn(1)-C)$ $C-Te-Mn(1)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(3)-C$	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te <i>el (grad)</i> <u>B</u> 24.7 (1) (2) (3) (4) (5)	C 23.9 42.0 46.5 -41.1 27.4 -64.5 168.4	D 23.3 41.2 40.3 Mn Mn Mn Mn Mn Mn	Ebene E = C(1) $Ebene F = C(2)$ $Ebene G = C(2)$ E 19.9 36.0 6.1 39.2 $a(1)-Te-Mn(3)-a(2)-Te-Mn(3)-Te-M$	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6) -C(1) -C(2)	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9 - 81.1 - 170.6 - 63.6 - 151.3	
Ebene A = Mn(1) $Ebene A = Mn(1)$ $Ebene B = Mn(1)$ $Ebene C = Mn(2)$ $Ebene D = Mn(3)$ $Interplanarwinke$ $Ebenen$ $A = B$ $C = D$ $E = F$ $Torsionswinkel (, C-Te-Mn(1)-C)$ $C-Te-Mn(1)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(2)-C$ $C-Te-Mn(3)-C$ $C-Te-Mn(3)-C$ $C-Te-Mn(4)-C$	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te <i>el (grad)</i> <u>B</u> 24.7 (1) (2) (3) (4) (5) (6)	C 23.9 42.0 46.5 -41.1 27.4 -64.5 168.4 78.9	D 23.3 41.2 40.3 Mn Mn Mn Mn Mn Mn Mn	Ebene E = C(1) $Ebene F = C(2)$ $Ebene G = C(2)$ E 19.9 36.0 6.1 39.2 $a(1)-Te-Mn(3)-a(2)-Te-Mn(3)-a(2)-Te-Mn(1)-a(3)-Te-Mn(1)-Te-Mn($	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6) -C(1) -C(2) -C(1)	G 110.2 92.1 133.2 102.9 127.7 88.1 - 30.9 - 81.1 - 170.6 - 63.6 - 151.3 157.6	
Ebene A = Mn(1) $Ebene A = Mn(1)$ $Ebene B = Mn(1)$ $Ebene C = Mn(2)$ $Ebene D = Mn(3)$ $Interplanarwinke$ $Ebenen$ A B C D E F $Torsionswinkel (, C-Te-Mn(1)-CC)$ $C-Te-Mn(1)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(3)-CC$ $C-Te-Mn(4)-CC$ $Mn(1)-Te-Mn(4)$	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te <i>el (grad)</i> B 24.7 <i>grad)</i> <i>f</i> (1) <i>f</i> (2) <i>f</i> (3) <i>f</i> (4) <i>f</i> (5) <i>f</i> (6) 2)–C(3)	C 23.9 42.0 46.5 -41.1 27.4 -64.5 168.4 78.9 137.6	D 23.3 41.2 40.3 Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn	Ebene E = C(1) $Ebene F = C(2)$ $Ebene G = C(2)$ E 19.9 36.0 6.1 39.2 $a(1)-Te-Mn(3)-a(2)-Te-Mn(3)-a(2)-Te-Mn(1)-a(3)-Te-Mn(1)-Te-Mn($	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6) -C(1) -C(2) -C(1) -C(2)	$G = 110.2 \\ 92.1 \\ 133.2 \\ 102.9 \\ 127.7 \\ 88.1 \\ - 30.9 \\ - 81.1 \\ - 170.6 \\ - 63.6 \\ - 151.3 \\ 157.6 \\ 69.9 \\ - 9 = 10000000000000000000000000000000000$	
Ebene A = Mn(1) $Ebene A = Mn(1)$ $Ebene B = Mn(1)$ $Ebene C = Mn(2)$ $Ebene D = Mn(3)$ $Interplanarwinke$ $Ebenen$ A B C D E F $Torsionswinkel (, C-Te-Mn(1)-CC$ $C-Te-Mn(1)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(2)-CC$ $C-Te-Mn(3)-CC$ $C-Te-Mn(3)-CC$ $C-Te-Mn(4)-CC$ $Mn(1)-Te-Mn(4)$	9)Mn(2)Mn(3)Te 9)Mn(3)Te 9)Mn(3)Te 9)Mn(1)Te el (grad) B 24.7 (1) (2) (3) (4) (5) (6) 2)–C(3) 2)–C(4)	C 23.9 42.0 46.5 -41.1 27.4 -64.5 168.4 78.9 137.6 45.7	D 23.3 41.2 40.3 Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn Mn	Ebene E = C(1) $Ebene F = C(2)$ $Ebene G = C(2)$ E 19.9 36.0 6.1 39.2 $a(1)-Te-Mn(3)-a(2)-Te-Mn(3)-a(2)-Te-Mn(1)-a(3)-Te-Mn(1)-a(3)-Te-Mn(1)-a(3)-Te-Mn(1)-a(3)-Te-Mn(2)-A(3)-Te-Mn(2)-A(3)-Te-Mn(2)-A(3)-Te-Mn(2)-A(3)-Te-Mn(2$	F 28.1 35.0 50.6 15.7 47.7 -C(6) -C(5) -C(6) -C(1) -C(2) -C(1) -C(2) -C(3)	$\begin{array}{c} G\\ 110.2\\ 92.1\\ 133.2\\ 102.9\\ 127.7\\ 88.1\\ \\ -30.9\\ -81.1\\ -170.6\\ -63.6\\ -151.3\\ 157.6\\ 69.9\\ -84.4 \end{array}$	

Die Winkelsumme am Telluratom, welches sich 56 pm oberhalb der von den drei Manganatomen aufgespannten Ebene befindet, beträgt 346.3°. Sie ist also um 13.6° kleiner als bei der Vorstufe 1. Hiermit vergleichbare Strukturen findet man im

Fig. 1. Molekülstruktur des Anions der salzartigen Verbindung 2 (ORTEP-Darstellung ohne Wasserstoffatome; Schwingungsellipsoide zu 50% Wahrscheinlichkeit).

pyramidalen Selen-Komplex $(\mu_3$ -Se)[$(\eta^5$ -C₅H₅)₃Fe₂Mn(CO)₆] (Selen-Winkelsumme 338.7° [11]) sowie beim Kation des Komplexsalzes [$(\mu_3$ -Te){Re(CO)₅}₃]⁺[BF₄]⁻ (Tellur-Winkelsumme 337.8° [12]). Die Abstände und Winkel im Kation [{P(C₆H₅)₃}₂]N⁺ liegen im erwarteten

Bereich und weisen keine Anomalien auf.

Fig. 2. Strukturzeichnung des Anions im Komplexsalz 2 zur Verdeutlichung der stark abgeflachten Mn₃TeC-Pyramidenstruktur.

Experimenteller Teil

Angaben zur allgemeinen Arbeitstechnik finden sich in Ref. 13. Der Tellur-Komplex 1 wurde nach Ref. 4 dargestellt.

[Bis(triphenylphosphoranyliden)ammonium][(μ_3 -methyltellurido)tris{dicarbonyl(η^5 -cyclopentadienyl)manganat}]] (2)

Eine Lösung von 1.00 g (1.53 mmol) 1 in 50 ml Diethylether wird bei -78° C unter magnetischem Rühren mit 3 ml einer 1.6 molaren etherischen Methyllithium-Lösung versetzt. Man bringt die Reaktionslösung auf Raumtemperatur. lässt den ausgefallenen Niederschlag 5 min absitzen und dekantiert die überstehende Lösung vorsichtig ab. Nach dreimaligem Waschen mit jeweils 10 ml Diethylether wird das Produkt in 30 ml N₂-gesättigtem Wasser gelöst. Durch Zugabe von 15 ml einer gesättigten wässrigen Lösung von [{(C₆H₅)₃P}₂N]⁻Cl⁻ wird das Salz 2 ausgefällt. Umkristallisation aus Tetrahydrofuran/Diethylether (1 + 5 Vol.-Teile) liefert 1.58 g (85%) rote, kurzzeitig luftstabile Nadeln, die gut löslich in Aceton und in THF, aber unlöslich in Diethylether und n-Hexan sind: die Lösungen sind luftempfindlich. Zers. ab 143°C.

Elementaranalyse: Gef.: C, 57.56; H, 4.09; Mn, 13.50. $C_{58}H_{48}Mn_3NO_6P_2Te$ (1209.3) ber.: C, 57.61; H, 4.00; Mn, 13.63.

Spektroskopische Daten: IR (ν (CO), cm⁻¹): 1925st, 1903sst, 1853st, 1840st (THF); 1920st, 1900st, 1835st, 1820st (KBr). ¹H-NMR (270 MHz, 25°C, Aceton- d_6): δ (C₆H₅) 7.53–7.77 (m, 30H); δ (C₅H₅) 4.44 (s, 15H); δ (CH₃) 1.92 (s, 3H). {¹H}¹³C-NMR (75.4 MHz, 25°C, Aceton- d_6): δ (C₆H₅) 127.2–134.4; δ (C₅H₅) 81.6; δ (CH₃) –14.5.

Röntgenstrukturanalyse des Komplexsalzes 2

Monoklin $P2_1/c$; a 1411.4(3), b 1098.1(2), c 3559.2(8) pm, $\alpha = \gamma = 90^{\circ}$, β 102.19(3)°; V 5392 × 10⁶ pm³; Summenformel: $C_{58}H_{48}Mn_3NO_6P_2Te$ (1209.3 a.m.u.); Z = 4; ρ (calc.) 1.49 g cm⁻³; μ 13.0 cm⁻¹; λ 71.073 pm (Mo- K_{α} -Strahlung); T 21 ± 1°C; Enraf-Nonius CAD4; Messbereich: $2^{\circ} \leq \theta \leq 22.5^{\circ}$; 7248 gemessene Reflexe, davon 3304 unabhängige Reflexe ($I > 3\sigma(I)$); $R = \sum ||F_0| - |F_c||/\sum |F_0|$: 0.037; $R_w = [\sum w(|F_0| - |F_c|)^2/\sum w|F_0|^2]^{1/2}$; 0.041; Einheitsgewichte. Die Strukturlösung erfolgte nach direkten Methoden. In der asymmetrischen Einheit befinden sich 71 'Schwer'-Atome (anisotrope Temperaturfaktoren), 640 Parameter "full-matrix" verfeinert. Eine Differenzfouriersynthese nur mit den Schweratomlagen liess keine Wasserstoffpositionen erkennen. Die Wasserstofflagen wurden in idealer Geometrie berechnet (d(C-H) 95 pm). Die H-Atome und ihre Temperaturfaktoren sind in die Berechnung der Temperaturfaktoren einbezogen, aber nicht verfeinert. Die Temperaturfaktoren sind für alle H-Atome gleich. Anomale Dispersion wurde berücksichtigt. Shift/Err: < 0.00 im letzten Verfeinerungszyklus: Restelektronendichte: $+ 0.47 e/Å^3$.

Dank

Diese Arbeit wurde seitens des Bundesministeriums für Forschung und Technologie sowie der Deutschen Forschungsgemeinschaft unterstützt, wofür wir an dieser Stelle danken.

Literatur

- 1 Ch. Hecht, E. Herdtweck, J. Rohrmann, W.A. Herrmann, W. Beck und P.M. Fritz, J. Organomet. Chem., 330 (1987) 407.
- 2 Zusammenfassung: W.A. Herrmann, Angew. Chem., 98 (1986) 57; Angew. Chem. Int. Ed. Engl., 25 (1986) 56.
- 3 W.A. Herrmann, J. Rohrmann, M. Ziegler und Th. Zahn, J. Organomet. Chem., 273 (1984) 221.
- 4 M. Herberhold, D. Reiner und D. Neugebauer, Angew. Chem., 95 (1983) 46; Angew. Chem. Int. Ed. Engl., 22 (1983) 59; Angew. Chem. Suppl., (1983) 10.
- 5 W.A. Herrmann, C. Bauer und J. Weichmann, J. Organomet. Chem., 243 (1983) C21.
- 6 W.A. Herrmann, J. Rohrmann und Ch. Hecht, J. Organomet. Chem., 290 (1985) 53.
- 7 I. Bernal, M. Creswick und W.A. Herrmann, Z. Naturforsch. B, 34 (1979) 1345.
- 8 (a) A.F. Wells: Structural Inorganic Chemistry, 4. Aufl., Clarendon Press, Oxford, 1975; (b) L. Pauling, Die Natur der Chemischen Bindung, 3. Aufl., Verlag Chemie, Weinheim, 1976.
- 9 G. Huttner, S. Schuller, L. Zsolnai, M. Gottlieb, H. Braunwarth und M. Minelli, J. Organomet. Chem., 299 (1986) C4.
- 10 F. Einstein, J. Trotter und C. Williston, J. Chem. Soc., A (1967) 2018.
- 11 W.A. Herrmann, J. Rohrmann, M.L. Ziegler und Th. Zahn, J. Organomet. Chem., 295 (1985) 175.
- 12 W. Beck, W. Sacher und U. Nagel, Angew. Chem., 98 (1986) 280; Angew. Chem. Int. Ed. Engl., 25 (1986) 270.
- 13 R.A. Fischer, H.-J. Kneuper und W.A. Herrmann, J. Organomet. Chem., 330 (1987) 365 (XLIV. Mitteilung).